Resources
Most recent models are published on Huggingface
[Benchmark, GitHub] MBIB – the first Media Bias Identification Benchmark Task and Dataset Collection
[Dataset, Huggingface] Anno-lexical (Lexical bias)
[Dataset, GitHub] BABE – Bias Annotations By Experts
[Dataset, Paper] BAT – Bias And Twitter
[Scale/Questionnaire to measure bias perception] Do You Think It’s Biased? How To Ask For The Perception Of Media Bias (A set of tested questions to assess media bias perception to be used in any bias-related research)
[Dataset, Zenodo] MBIC -A Media Bias Annotation Dataset Including Annotator Characteristics
Publications
2024
Hinterreiter, Smi; Spinde, Timo; Oberdörfer, Sebastian; Echizen, Isao; Latoschik, Marc Erich
News Ninja: Gamified Annotation of Linguistic Bias in Online News Journal Article Forthcoming
In: Proc. ACM Hum.-Comput. Interact., vol. 8, no. CHI PLAY, Forthcoming, (Publisher: Association for Computing Machinery. Conditionally accepted for publication).
Abstract | Links | BibTeX | Tags: crowdsourcing, Game With A Purpose, linguistic bias, media bias, news bias
@article{Hinterreiter2024News,
title = {News Ninja: Gamified Annotation of Linguistic Bias in Online News},
author = {Smi Hinterreiter and Timo Spinde and Sebastian Oberdörfer and Isao Echizen and Marc Erich Latoschik},
url = {https://media-bias-research.org/wp-content/uploads/2024/07/Preprint_News_Ninja.pdf},
doi = {10.1145/3677092},
year = {2024},
date = {2024-10-14},
urldate = {2024-10-14},
journal = {Proc. ACM Hum.-Comput. Interact.},
volume = {8},
number = {CHI PLAY},
abstract = {Recent research shows that visualizing linguistic bias mitigates its negative effects. However, reliable automatic detection methods to generate such visualizations require costly, knowledge-intensive training data. To facilitate data collection for media bias datasets, we present News Ninja, a game employing data-collecting game mechanics to generate a crowdsourced dataset. Before annotating sentences, players are educated on media bias via a tutorial. Our findings show that datasets gathered with crowdsourced workers trained on News Ninja can reach significantly higher inter-annotator agreements than expert and crowdsourced datasets with similar data quality. As News Ninja encourages continuous play, it allows datasets to adapt to the reception and contextualization of news over time, presenting a promising strategy to reduce data collection expenses, educate players, and promote long-term bias mitigation.},
note = {Publisher: Association for Computing Machinery.
Conditionally accepted for publication},
keywords = {crowdsourcing, Game With A Purpose, linguistic bias, media bias, news bias},
pubstate = {forthcoming},
tppubtype = {article}
}